1) a)

Could also be arranged 2 rows of 4 squares.
b)

Could also be arranged 4 rows of 2 squares.
2) The dimensions of the original flag were 3×3 squares.

Doubling these dimensions creates a flag with dimensions of 6×6 squares:

3) a)

b)

4) $12.9 \mathrm{~cm} \div 3=4.3 \mathrm{~cm}$
$4.3 \mathrm{~cm} \times 4=17.2 \mathrm{~cm}$
perimeter $=17.2 \mathrm{~cm}$

1) Alice is incorrect. If shape A is enlarged by a scale factor of 2 , then the length and width of the shape double in size.

Correctly enlarging shape a with a scale factor of 2 will result in shape B having a width and height of 4 squares.
2) $12 \div 3=4$
$4 \times 5=20 \mathrm{~cm}$
3) Each dimension should be enlarged by 3.

Width: $3 \times 3=9 \mathrm{~cm}$
Height: $2 \times 3=6 \mathrm{~cm}$
Area of triangle: $\mathbf{h} \times \mathbf{w} \div \mathbf{2}$
$9 \times 6=54 \div 2=27 \mathrm{~cm}^{2}$
Johan is incorrect.

$8+8+8 \mathrm{~cm}=24 \mathrm{~cm}$ (even)
$8 \div 2=4$
The smaller triangle has been enlarged by a scale factor of four to create the larger triangle. Jamil is correct.
2) $10 \div 4=2.5$

The shape has been enlarged using 2.5 as a scale factor.
$3 \times 2.5=7.5 \mathrm{~cm}$
Two sides the same length in an isosceles triangles: $2 \times 7.5=15 \mathrm{~cm}$
$15+10=25 \mathrm{~cm}$
The perimeter is 25 cm
3)

Dimension	Scale Factor 0.5	Original Triangle	Scale Factor 2	Scale Factor 3	Scale Factor 4
Height (cm)	3 cm	$\mathbf{6 c m}$	12 cm	18 cm	24 cm
Width (mm)	16 mm	32 mm or 3.2 cm	$\mathbf{6 4 m m}$ or 6.4 cm	$\mathbf{9 6 m m}$ or 9.6 cm	128 mm or 12.8 cm

