1) Find the volume of each shape. Then, order them from the greatest volume to the smallest volume.

cm^{3}
2) Which of these amounts shows the greatest volume? Which is the smallest volume? How do you know?

3) How many more $1 \mathrm{~cm}^{3}$ interlocking cubes will need to to be added to each model to make a complete cube with sides of 3 cm ?
a)

b)

\qquad
\qquad
\qquad
4) Joshua draws two different views of the model his friend has made out of $1 \mathrm{~cm}^{3}$ interlocking cubes. Keeva looks at Joshua's drawing.

\qquad
\qquad
\qquad
5) Shen thinks that both of these shapes put together will have the same volume as Emily's cuboid.

Is Shen correct? Prove it!
\qquad
\qquad
\qquad
\qquad

1) a) This cube is made from $1 \mathrm{~cm}^{3}$ interlocking cubes.

Imagine that the cube has been made with a hollow centre so that only the faces are made from the interlocking cubes.

What is the volume of the cube?

\qquad
\qquad
\qquad
b) If another similar hollow cube was made that had the dimensions $5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$, what would the volume of the cube be?
\square
2) I use $1 \mathrm{~cm}^{3}$ interlocking cubes to make some different size cuboids. I make cuboids with different side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm .
Here are two of my cuboids:
a) What are the volumes of each cuboid?

b) How many more cuboids can I make which have side lengths of $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm ? What is the volume of each different cuboid?

