Complete the sentences to describe the relationship between the quantities of each shape.
1)

a) For every 1 circle, there are \qquad triangles.
b) For every 2 circles, there are \qquad triangles.
c) For every 3 circles, there would be \qquad triangles.
d) For every 12 triangles, there would be \qquad circles.
2)

a) For every 3 pentagons, there are \qquad triangles and \qquad circles.
b) For every 10 circles, I would have \qquad pentagons.
c) For every 6 triangles, I would have \qquad pentagons.
d) For every 40 shapes, I would have \qquad triangles, \qquad pentagons and \qquad circles.
3)

a) For every 1 banana, there are \qquad apples.
b) For every 3 bananas, there are \qquad apples.
c) For every 21 apples, I would have \qquad bananas.
b) For every 40 pieces of fruit, I would have \qquad bananas and \qquad apples.

1) In Mrs Hull's year 6 class, there are 4 boys for every 1 girl.

Based on the ratio above, which statements could be true about Mrs Hull's class? Explain your answers fully.
a) There are 15 boys and 15 girls in Mrs Hull's class.

b) There are 5 girls and 20 boys in Mrs Hull's class.
\qquad
\qquad
c) There are 13 boys in Mrs Hull's class.
\qquad
\qquad
2) Explain if you agree, partially agree or disagree with each of the children's statements about the shapes below. If you disagree, explain why.

1) Complete the statements to describe the relationship between the quantities of each shape in this collection of shapes:

a) For every 1 pentagon there are \qquad triangles,
\qquad circles.
b) For every 5 pentagons there are \qquad triangles,
\qquad squares and \qquad circles.
c) For every 70 shapes there are \qquad pentagons,
\qquad triangles, \qquad squares and \qquad circles.
2) The quantities of each fruit bought by a family every week is shown below.

If the family continue to buy the same amount of fruit each week how many of each fruit will they have bought by the time they have bought 56 apples?

Apples: 56
Lemons: \qquad

Bananas: \qquad
Oranges: \qquad
Total: \qquad

3) Create your own 'for every...' questions comparing the relationship between the numbers of fruit.
\qquad
\qquad
\qquad
